Recognition of Electromyographic Signal Time Series on Daily Hand Motions Based on Long Short-Term Memory Network
نویسندگان
چکیده
منابع مشابه
the effects of keyword and context methods on pronunciation and receptive/ productive vocabulary of low-intermediate iranian efl learners: short-term and long-term memory in focus
از گذشته تا کنون، تحقیقات بسیاری صورت گرفته است که همگی به گونه ای بر مثمر ثمر بودن استفاده از استراتژی های یادگیری لغت در یک زبان بیگانه اذعان داشته اند. این تحقیق به بررسی تاثیر دو روش مختلف آموزش واژگان انگلیسی (کلیدی و بافتی) بر تلفظ و دانش لغوی فراگیران ایرانی زیر متوسط زبان انگلیسی و بر ماندگاری آن در حافظه می پردازد. به این منظور، تعداد شصت نفر از زبان آموزان ایرانی هشت تا چهارده ساله با...
15 صفحه اولTime Series Forecasting Based on Augmented Long Short-Term Memory
In this paper, we use variational recurrent model to investigate the time series forecasting problem. Combining recurrent neural network (RNN) and variational inference (VI), this model has both deterministic hidden states and stochastic latent variables while previous RNN methods only consider deterministic states. Based on comprehensive experiments, we show that the proposed methods significa...
متن کاملthe effect of teaching vocabulary through memory learning strategies on iranian intermediate efl learners long-term vocabulary retention
بسیاری از دبیران و دانش آموزان بر این باورند که یادگیری لغات آسان است و شیوه های مختلفی برای یادگیری وجود دارد گرچه یادآوری لغات پس از مدت طولانی بسیار دشوار و پرزحمت است . هدف از این تحقیق آن است که تاثیر استراتژی های حافظه بر روی نگهداری بلند مدت لغات در زبان آموزان خانم سطح متوسط در ایران را بررسی کند. قبل از شروع تدریس، آزمون تعیین سطحی به منظور داشتن زبان آموزان یک سطح برگزار شده و بر اساس...
A New Approach for Investigating the Complexity of Short Term EEG Signal Based on Neural Network
Background and purpose: The nonlinear quality of electroencephalography (EEG), like other irregular signals, can be quantified. Some of these values, such as Lyapunovchr('39')s representative, study the signal path divergence and some quantifiers need to reconstruct the signal path but some do not. However, all of these quantifiers require a long signal to quantify the signal complexity. Mate...
متن کاملForecasting Across Time Series Databases using Long Short-Term Memory Networks on Groups of Similar Series
With the advent of Big Data, nowadays in many applications databases containing large quantities of similar time series are available. Forecasting time series in these domains with traditional univariate forecasting procedures leaves great potentials for producing accurate forecasts untapped. Recurrent neural networks, and in particular Long Short Term Memory (LSTM) networks, have proven recent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Traitement du Signal
سال: 2021
ISSN: 0765-0019,1958-5608
DOI: 10.18280/ts.380216